313 research outputs found

    Female Drosophila melanogaster Gene Expression and Mate Choice: The X Chromosome Harbours Candidate Genes Underlying Sexual Isolation

    Get PDF
    Background: The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown. Methods and Findings: We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean) versus less (Cosmopolitan strain) preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations. Conclusion: Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized

    Analysis of Synaptic Proteins in the Cerebrospinal Fluid as a New Tool in the Study of Inborn Errors of Neurotransmission

    Get PDF
    Abstract In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samplesfrom 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism. Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex.

    Get PDF
    We incorporated the non-natural photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa) into the RNA polymerase II (Pol II) surface surrounding the central cleft formed by the Rpb1 and Rpb2 subunits. Photo-cross-linking of preinitiation complexes (PICs) with these Pol II derivatives and hydroxyl-radical cleavage assays revealed that the TFIIF dimerization domain interacts with the Rpb2 lobe and protrusion domains adjacent to Rpb9, while TFIIE cross-links to the Rpb1 clamp domain on the opposite side of the Pol II central cleft. Mutations in the Rpb2 lobe and protrusion domains alter both Pol II-TFIIF binding and the transcription start site, a phenotype associated with mutations in TFIIF, Rpb9 and TFIIB. Together with previous biochemical and structural studies, these findings illuminate the structural organization of the PIC and the network of protein-protein interactions involved in transcription start site selection

    Ventral and dorsal striatal dopamine efflux and behavior in rats with simple vs. co-morbid histories of cocaine sensitization and neonatal ventral hippocampal lesions

    Get PDF
    xposing animal models of mental illness to addictive drugs provides an approach to understanding the neural etiology of dual diagnosis disorders. Previous studies have shown that neonatal ventral hippocampal lesions (NVHL) in rats produce features of both schizophrenia and addiction vulnerability. Objective This study investigated ventral and dorsal striatal dopamine (DA) efflux in NVHL rats combined with behavioral sensitization to cocaine. Methods Adult NVHL vs. SHAM-operated rats underwent a 5-day injection series of cocaine (15 mg/kg/day) vs. saline. One week later, rats were cannulated in nucleus accumbens SHELL, CORE, or caudate–putamen. Another week later, in vivo microdialysis sampled DA during locomotor testing in which a single cocaine injection (15 mg/kg) was delivered. Results NVHLs and cocaine history significantly increased behavioral activation approximately 2-fold over SHAM-saline history rats. DA efflux curves corresponded time dependently with the cocaine injection and locomotor curves and varied significantly by striatal region: Baseline DA levels increased 5-fold while cocaine-stimulated DA efflux decreased by half across a ventral to dorsal striatal gradient. However, NVHLs, prior cocaine history, and individual differences in behavior were not underpinned by differential DA efflux overall or within any striatal region.Conclusion Differences in ventral/dorsal striatal DA efflux are not present in and are not required for producing differential levels of acute cocaine-induced behavioral activation in NVHLs with and without a behaviorally sensitizing cocaine history. These findings suggest other neurotransmitter systems, and alterations in striatal network function post-synaptic to DA transmission are more important to understanding the interactive effects of addictive drugs and mental illness

    Peptide Array X-Linking (PAX): A New Peptide-Protein Identification Approach

    Get PDF
    Many protein interaction domains bind short peptides based on canonical sequence consensus motifs. Here we report the development of a peptide array-based proteomics tool to identify proteins directly interacting with ligand peptides from cell lysates. Array-formatted bait peptides containing an amino acid-derived cross-linker are photo-induced to crosslink with interacting proteins from lysates of interest. Indirect associations are removed by high stringency washes under denaturing conditions. Covalently trapped proteins are subsequently identified by LC-MS/MS and screened by cluster analysis and domain scanning. We apply this methodology to peptides with different proline-containing consensus sequences and show successful identifications from brain lysates of known and novel proteins containing polyproline motif-binding domains such as EH, EVH1, SH3, WW domains. These results suggest the capacity of arrayed peptide ligands to capture and subsequently identify proteins by mass spectrometry is relatively broad and robust. Additionally, the approach is rapid and applicable to cell or tissue fractions from any source, making the approach a flexible tool for initial protein-protein interaction discovery.National Institutes of Health (U.S.) (Grant R21-CA-140030-01

    Synapse Pathology in Psychiatric and Neurologic Disease

    Get PDF
    Inhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical signals. In recent years, it has become evident that spine morphology is intimately linked to synapse function—smaller spines have smaller synapses and support reduced synaptic transmission. The relationship between synaptic signaling, spine shape, and brain function is never more apparent than when the brain becomes dysfunctional. Many psychiatric and neurologic disorders, ranging from mental retardation and autism to Alzheimer’s disease and addiction, are accompanied by alterations in spine morphology and synapse number. In this review, we highlight the structure and molecular organization of synapses and discuss functional effects of synapse pathology in brain disease

    NMDA Receptors on Non-Dopaminergic Neurons in the VTA Support Cocaine Sensitization

    Get PDF
    The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic plasticity in the mesolimbic dopamine (DA) circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA) DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1(DATCre) mice).Using an additional NR1(DATCre) mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1(DATCre) mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1(DATCre) mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1(DATCre) transgenic model, and that application of an NMDAR antagonist within the VTA of NR1(DATCre) animals still blocks sensitization to cocaine.These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1(DATCre) mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior

    Population genomics of sub-Saharan Drosophila melanogaster: African diversity and non-African admixture

    Get PDF
    (ABRIDGED) We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan admixture, possibly reflecting a role for some of these loci in driving the introgression of non-African alleles into African populations

    The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val66Met

    Get PDF
    Contains fulltext : 98431.pdf (publisher's version ) (Open Access)RATIONALE: Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover, the effects of stressful events on BDNF levels may in part be conditional upon a common variant on the BDNF gene (Val(66)Met; RS6265), with the Met allele being associated with a decrease in activity-dependent secretion of BDNF compared to the Val allele. METHODS: We investigated cross-sectionally in 1,435 individuals with lifetime MDD the impact of childhood abuse (CA) and recent life events on serum BDNF levels and assessed whether the impact of these events was moderated by the BDNF Val(66)Met polymorphism. RESULTS: Overall, BDNF Met carriers had reduced serum BDNF levels when exposed to CA in a dose-dependent way. Moreover, exposure to recent life events was also associated with decreases in BDNF levels, but this was independent of BDNF Val(66)Met. Moreover, when not exposed to CA, Met carriers had higher BDNF levels than the Val/Val individuals, who did not show decreases in BDNF associated with CA. Finally, these findings were only apparent in the MDD group without comorbid anxiety. CONCLUSIONS: These gene-environment interactions on serum BDNF levels suggest that Met carriers are particularly sensitive to (early) stressful life events, which extends previous findings on the moderating role of the BDNF Val(66)Met polymorphism in the face of stressful life events
    corecore